return_links(1);?>
  Главная     Типы реакторов     Архив     Публикации      Ссылки  

Океан энергии.
Как-то руководителя английской термоядерной программы лауреата Нобелевской премии Джона Кокрофта спросили, когда термоядерный реактор даст промышленный ток. Крокрофт ответил: "Через 20 лет". Это же вопрос ему задали через 7 лет. Ответ был прежним: "Через 20 лет". Журналисты не преминули припомнить Кокрофту его слова семилетней давности, но невозмутимы англичанин отрезал: "Вы видите, я не меняю своей точки зрения".

   Сегодня все хорошо понимают, что освоенные источники энергии, у сожалению, неизбежно и скоро истощатся. Наиболее обеспеченные топливом атомные электростанции могли бы конечно, еще не одну сотню лет снабжать человечество электроэнергией. Однако наличие радиоактивных отходов "долгожителей", остающихся после их работы, и панический страх человечества последствий гипотетической аварии изрядно ограничивают возможность всеобщего перехода на атомную энергетику. А поэтому поиски альтернативных источников энергии идут особенно интенсивно.

   Продолжающиеся уже 50 лет исследования в области управляемого термоядерного синтеза, судя по всему перешли в стадию технически реализуемых изделий. И поэтому в ближайшие 50 лет на земле должны появятся первые термоядерные электростанции, призванные решит проблему безопасного и практически неисчерпаемого источника энергии. Реакция слияния ядер называется термоядерной, потому что она реализуется за счет энергии теплового движения, позволяющим атомным ядрам преодолеть силу кулоновского отталкивания и сблизится настолько, что начинают действовать силы ядерного притяжения. Поэтому для запуска термоядерной реакции надо просто нагреть необходимые компоненты и удержать их вместе, не дав им разлететься из за огромного давления и скорости теплового движения. При 100 милионах градусов, необходимых для начала реакции, электроны отрываются от ядер и вещество переходит в состояние плазмы. При таких температурах испарится любой материал, поэтому плазму в вакууме удерживают внутри реактора с помощью магнитного поля очень высокой напряженности. Поле не дает заряженным частицам вылетать за пределы "плазменного шнура", зато образующиеся вовремя реакции нейтроны магнитным полем не задерживаются и передают свою энергию стенкам установки, которые нагреваются за счет теплового излучения плазмы и охлаждаются, например жидки литием. Получающийся в парогенераторах пар можно направить на турбину, как в обычных электростанциях.
ТОКАМАК - это один из вариантов устройства, способного формировать долгоживущую горячую плазму высокой плотности. При достижении определенных параметров плазмы в ней начинается термоядерная реакция синтеза ядер гелия из исходного сырья - изотопов водорода (дейтерия и трития). При этом в токамак - реакторе должно вырабатываться существенно больше энергии, чем затрачивается на формирование плазмы.

Впервые схема магнитного термоядерного реактора была предложена в 1950 году Андреем Дмитриевичем Сахаровым и Игорем Евгеньевичем Таммом. Токамак представляет по сути полый бублик (тор), на который намотан проводник, образующий магнитное поле. Основное магнитное поле в камере ловушке, содержащей горячую плазму, создается тороидальными магнитными катушками. Существенную роль в удержании плазмы играет плазменный ток, который протекает вдоль кругового плазменного шнура и создает полоидальное магнитное поле. Ток в плазме поддерживается вихревым электрическим полем, создаваемым первичной обмоткой индуктора. При этом плазменный шнур играет роль вторичной обмотки.


На фото один из первых токамаков созданный в институте атомной энергии имени И.В. Курчатова.

   16 июля 1945 года состоялся первый испытательный взрыв плутониевой атомной бомбы на полигоне в Нью-Мексико (США). Спустя несколько недель американцы уничтожили японские города Хиросиму (6 авг sста) и Нагасаки (9 августа), сбросив на них урановую и плутониевую бомбы с взрывным эквивалентами 15 000 тон тринитротолуола.
   1 ноября 1952 года произведен взрыв специального устройства типа водородной бомбы под кодовым название "Майк", представлявшего собой более чем 50 тонный куб высотой с 2 этажный дом и длинной ре бра 7.5 м. Мощность взрыва, в результате которого был уничтожен остров на атолле Эниветок в Тихом океане, в 1000 раз превосходила мощность атомной бомбы сброшенной на Хиросиму.
   12 августа 1953 года произведено первое испытание транспортабелной термоядерной бомбы на Семипалатинском полигоне. Мощность заряда соответствовала 30 "хиросимам".
   27 июня 1945 года первая атомная электростанция с реактором АМ-1 (Атом Мирный) мощностью 5МВт дала промышленный ток в подмосковном поселке Обнинске на территории так называемой "Лаборатории В" (ныне Государственный научный центр РФ "Физико-энергетический институт").
   1954 год - в Институте атомной энергии был построен первый токамак. Данная тороидальная камера с магнитной катушкой стала прототипом современных управляемых термоядерных реакторов.
   30 октября 1961 года в Советском Союзе на новой земле, была испытана самая мощная в мире водородная боиба с тротиловым эквивалентом 50 млн.т. Взрывная волна оказалась столь сильной, что выбила с текла в поселке Диксон, расположенном в 800 км от Новой Земли. Всего в мире к сегодняшнему дню взорвано более 2 000 ядерных и термоядерных зарядов, из них около 500 - в воздухе.
   1991 год - впервые достигнута мощность термоядерной реакции в 1 МВт на современном токомаке - JET (Joint European Torus) в городе Абингдоне, недалеко от Оксфорда, в научном центре Cul ham lab. Сегодня на JET достигнут рубеж в 300 млн градусов и 16 МВт при секундной длительности импульса.
   1998 год - закончен инженерный проект токамак-реактора ITER (International Thermonuclear Experimental Reactor). Работы проводились совместными усилиями четырех сторон: Европы, России, США и Японии - с целью создания первого экспериментального реактора рассчитанного на достижение долговременного термоядерного горения смеси дейтерия с тритием.
   2010-2015 годы планируется завершить строительство токомак-реактора ITER с полной мощьностью термоядерных реакций не менее 1 ГВт при времени непрерывного горения плазмы десятки минут. Происходить оно будет с участием Канады но без США, вышедших из консорциума. Стоимость данного проекта оценивается в 5 млрд долларов.


Наиболее мощный современный токамак JET (конструкция Европейского Сообщества) был создан в городе Абингоне, недалеко от Оксфорда, в научном центре Culham lab. Его функционирование и совершенствование финансирует международная организация Euratom. Огромный высотой 10 м, токамак вырабатывает плазму с температурой до 100 милионов градусов и сохраняет ее при достаточной плотности в течении нескольких секунд.


Схема токамак-реактора ITER. Представление о размерах данной конструкции дает фигура человека, находящаяся в низу картинки. Ее высота более 25 метров, вес - 45 000 тон, внутренний объем - 2000 м3. На разрезе видна тороидальная камера, в которой будет происходить термоядерная реакция.

   Топливный цикл разрабатываемых термоядерных реакторов в точности повторяет последовательность ядерных реакций, происходящих при взрыве водородной бомбы. Взрывчатым веществом термоядерной бомбы является дейтерид лития-6 - соединение тяжелого изотопа водорода (дейтерия) и изотопа лития с массовым числом 6. Дейтерид лития-6 - твердое вещество, и это позволяет хранить "сконцентрированный" дейтерий при плюсовых температурах. Второй компонент соединения, литий-б, - это сырье для по лучения самого дефицитного изотопа водорода - трития. При облучении его нейтронами он распадается на необходимый для термоядерной реакции тритий и неиспользуемый гелий. В термоядерной бомбе нейтроны, необходимые для термоядерной реакции, "обеспечивает" взрыв атомного "капсуля", и тот же взрыв создает условия, необходимые для начала реакции термоядерного синтеза, - температуру до 100 миллионов градусов и давление в миллионы атмосфер.
   Таким образом, термоядерный реактор будет сжигать дейтерий и литий, а в результате реакций будет образовываться инертный газ гелий.
   Для работы необходимо очень небольшое количество лития и дейтерия. Например, реактор с электрической мощностью 1 ГВт сжигает около 100 кг дейтерия и 300 кг лития в год. Если предположить, что все термоядерные электростанции будут производить 10 трлн. кВт ч электроэнергии в год, то есть столько же, сколько сегодня производят все электростанции земли, то потребление дейтерия и лития составят всего 1 500 и 4 500 тонн в год. При таком расходе содержащегося в воде дейтерия (0,015%) хватит на то, чтобы снабжать человечество энергией в течение многих миллионов лет. Но поскольку для производства трития необходим литий, энергетические ресурсы такого типа реакторов ограничены запасами лития. Разведанные рудные запасы лития составляют 10 млн. тонн, и этих запасов должно хватить на многие сотни лет. Кроме того, литий содержится в морской воде в концентрации менее 0,0000002% и количестве, превышающем в тысячи раз разведанные запасы.
   Кроме термоядерной энергетики на литий претендует современная радиоэлектронная промышленность. Всем хорошо известны литий-ионные аккумуляторы для сотовых телефонов, видеокамер и фотоаппаратов, в которых используется тот же самый литий. Это самый легкий металл, и поэтому в 30-граммовом Li-юп-аккумуляторе находится существенно больше атомов, способных к электрохимической реакции, чем в 100-граммовом никель-кадмиевом, а следовательно, и запасенная в аккумуляторе энергия оказывается существенно выше. В природной смеси изотопов на долю лития-6 приходится только 7,5%, поэтому рачительные хозяева уже сегодня отделяют его от основного изотопа литий-7 и складируют в качестве стратегических запасов. Правда, тритий можно получать и из лития-7, но данный способ пока не планируется к промышленному применению. В свете предстоящего энергетического кризиса особенно актуальны и понятны требования производителей аккумуляторов не выбрасывать отслужившие свой век батареи на свалку, а сдавать для повторного использования находящихся в них цен- ных и редких металлов. Хотя возможно, что именно городские свалки и будут теми самыми месторождениями по- лезных ископаемых, которые придется "разрабатывать" нашим потомкам...

Подготовка топлива (Li6 + n = He4 + T)
Проще всего получать нужный для термоядерной реакции тритий прямо на термоядерной электростанции, облучая изотоп лития с атомной массой 6 нейтронами, образующимися при слиянии трития и дейтерия. При данной реакции к томуже выделяется еще 4.8 МэВ энергии
(т.е. 0.8· 10 -12 Дж на один акт деления).
Основна реакция (D + T = He4 + n)
В результате столкновения ядер дейтерия и трития образуются ядро гелия и нейтрон, а также выделяется 17,6 МэВ энергии (т.е. 2.8· 10 -12 Дж на один акт деления). Данная термоядерная реакция для своего осуществления требует значительно меньших температур и плотностей плазмы, чем традиционное для звезд слияние двух ядер дейтерия в гелий, да и энергии при таком акте выделяется в 5 раз больше, чем в солнечном. В итоге преобразование исходного сырья лития -6 и детерия в гелий происходит при суммарном выделении 22.4 МэВ тепловой энергии
(т.е. 2.8· 10 -12 Дж).

    Кроме слияния трития и дейтерия возможен чисто солнечный термояд, когда соединяются два атома дейтерия. В случае освоения данной реакции энергетические проблемы будут решены сразу и навсегда. Однако осуществить слияние двух ядер дейтерия - дело весьма непростое. В любом из известных вариантов управляемого термоядерного синтеза термоядерные реакции не могут войти в режим неконтролируемого нарастания мощности без последующего срыва плазмы и прекращения реакций. Таким образом, термоядерным реакторам присуща внутренняя безопасность. Исходное топливо, потребляемое термоядерным реактором (дейтерий и литий), как и конечный продукт реакций (гелий), не радиоактивны. Радиоактивными являются промежуточные продукты реакций. В реакторе, использующем реакцию слияния дейтерия и трития, существуют два принципиальных источника радиоактивности. Первый - тритий, который участвует в топливном цикле реактора. Тритий радиоактивен и превращается в гелий-3 с испусканием бета-излучения с периодом полураспада 12,3 года. Второй источник радиоактивности - это активация нейтронами конструкционных материалов внутренней стенки и теплоносителя. В результате облучения нейтронами в них будут образовываться и накапливаться радиоактивные продукты ядерных реакций. Первоначальная сборка термоядерного реактора полностью может производится людьми, поскольку все исходные материалы не радиоактивны. Однако текущий ремонт. И тем более демонтаж отработавшего положенное время реактора должен производится специальными роботами - манипуляторами, поскольку облучение мощнейшим потоком нейтронов на протяжении многих лет не проходит бесследно ни для каких конструкционных материалов и уровень ионизирующего излучения в рабочей камере остановленного токамак-реактора будет немалый.

    Специалисты утверждают, что термоядерная электростанция с тепловой мощностью 1 ГВт в плане радиационной опасности эквивалентна урановому реактору деления мощностью 1 КВт (типичный университетский исследовательский реактор). И это обстоятельство во многом является решающим фактором, вызывающим пристальное внимание правительств многих стран к термоядерной энергетике. Почти полное отсутствие радиоактивных отходов и минимальность радиоактивной опасности даже в случае катастрофического разрушения термоядерного реактора в сочетании с огромными запасами топлива для таких электростанций делает термоядерную энергетику крайне перспективной в плане преодоления грядущего энергетического кризиса.

ВЛАДИМИР РЕШЕТОВ, доцент МИФИ, кандидат физико-математических наук
ВОКРУГ СВЕТА

return_links(1);?>
  Главная     Типы реакторов     Архив     Публикации      Ссылки